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Abstract 

Hybrid &b molecules in which the heavy bb pair is bound together by the 

excited gluon field g are studied using the Born-Oppenheimer expansion and 

quenched numerical simulations. The consistency of results from the two 

approaches reveals a simple and compelling physical picture for heavy hybrid 

states. 
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In addition to conventional hadrons, QCD predicts the existence of glueballs and hybrid 

states which contain excited gluon fields. Hybrid mesons with heavy hb quark pairs are 

the most amenable to theoretical treatment. They are also experimentally accessible: early 

results from the CUSB and CLEO collaborations [l,2] revealed a complex resonance structure 

between the BB threshold and 11.2 GeV in e+e- armihiliation, precisely where the lowest 

hybrid excitations are expected [3]. 

In this work, we determine the masses of the lowest bgb states. Heavy hybrid mesons can 

be studied not only directly by numerical simulation, but also using the Born-Oppenheimer 

expansion which is our primary guidance for the development of a simple physical picture. 

The Born-Oppenheimer picture was introduced for the description of heavy hybrid states 

in Refs. [4,5] and was applied using hybrid potentials first calculated in lattice QCD in 

Ref. [6]. In this new study, we work to leading order in the expansion and neglect higher- 

order terms involving spin, relativistic, and retardation effects. We test the accuracy of the 

Born-Oppenheimer approach by comparison with high-precision results from simulations. 

Our hybrid meson simulations are the first to exploit anisotropic lattices with improved 

actions; preliminary reports on some of our results have appeared previously [7]. The hy- 

brid meson mass uncertainties with improved anisotropic lattice technology are dramatically 

smaller than those obtained in recent isotropic lattice studies in the nonrelativistic formu- 

lation of lattice QCD (NRQCD) using the Wilson gauge action [8,9]. We report here our 

final analysis on four distinct hybrid bgb states. Although the effects of dynamical sea 

quarks are not included in our quenched simulations, we will comment on their impact on 

the hybrid spectrum. The mass of the lowest hybrid cgc state was determined recently 

[lo] without NRQCD expansion for the slowly moving heavy quark and agrees with our 

Born-Oppenheimer results [3] (see caption of Fig. 1). 

The hybrid meson can be treated analogous to a diatomic molecule: the slow heavy 

quarks correspond to the nuclei and the fast gluon field corresponds to the electrons [4]. 

First, one treats the quark Q and antiquark B as spatially-fixed color sources and determines 

the energy levels of the excited gluon field as a function of the $Q separation r; each of 

these excited energy levels defines an adiabatic potential Vaps(r). The quark motion is 
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then restored by solving the Schrodinger equation in each of these potentials. Conventional 

quarkonia are based on the lowest-lying static potential; hybrid quarkonium states emerge 

from the excited potentials. Once the static potentials have been determined (via lattice 

simulations), it is a simple matter to determine the complete spectrum of conventional and 

hybrid quarkonium states in the leading Born-Oppenheimer (LBO) approximation. This is 

a distinct advantage over meson simulations which yield only the very lowest-lying states, 

often with large statistical uncertainties. In addition. the LB0 wave functions yield valuable 

information concerning the structures and sizes of these states which should greatly facilitate 

phenomenological applications. 

The energy spectrum of the excited gluon field in the presence of a static quark-antiquark 

pair has been determined in previous lattice studies [7]. The three lowest-lying levels are 

shown in Fig. 1. These levels correspond to energy eigenstates of the excited gluon field 

characterized by the magnitude A of the projection of the total angular momentum J, of the 

gluon field onto the molecular axis, and by 77 = fl, the symmetry quantum number under 

the combined operations of charge conjugation and spatial inversion about the midpoint 

between the quark and antiquark of the QgQ system. Following notation from molecular 

spectroscopy, states with A = 0, 1,2,. . . are typically denoted by the capital Greek letters 

c, n, a, . . .) respectively. States which are even (odd) under the above-mentioned parity- 

charge-conjugation operation are denoted by the subscripts g (u). There is an additional 

label for the C states; C states which are even (odd) under a reflection in a plane containing 

the molecular axis are denoted by a superscript + (-). In Ref. [7], the potentials are 

calculated in terms of the hadronic scale parameter ro [ll]; the curves in Fig. 1 assume 

-1 
I-0 = 450 MeV (see below). Note that as r becomes small (below 0.1 fm), the gaps between 

the excited levels and the Ci ground state will eventually exceed the mass of the lightest 

glueball. When this happens, the excited levels will become unstable against glueball decay. 

Given these static potentials, the LB0 spectrum is easily obtained by solving the radial 

Schrodinger equation with a centrifugal factor (L&) = L(L + 1) - 2A2 + (Jz), where L,, is 

the orbital angular momentum of the quark-antiquark pair. For the “9’ potential, (Ji) = 0. 

For the II, and C; levels, we attribute the lowest nonvanishing value (Ji) = 2 to the excited 



gluon field. Let S be the sum of the spins of the quark and antiquark, then the total 

angular momentum of a meson is given by J = L + S. In the LB0 approximation, the 

eigenvalues L(L + 1) and S(S + 1) of L2 and S2 are good quantum numbers. The parity P 

and charge conjugation C of each meson is given in terms of L and S by P = E (-l)L+iz-tl 

and C = E 77 (-l)L+“-ts, where L >_ A and e = 1 for C+, t = -1 for C-, and E = fl for 

A > 0. Note that for each static potential, the LB0 energies depend only on L and the 

radial quantum number n. 

Results for the LB0 spectrum of conventional 6b and hybrid bgb states are shown 

in Fig. 1. The heavy quark mass Mb is tuned to reproduce the experimentally-known Y(lS) 

mass: MT = 2Mb + Eo, where Eo is the energy of the lowest-lying state in the Ci potential. 

Level splittings are insensitive to small changes in the heavy quark mass. For example, a 

5% change in Mb results in changes to the splittings (with respect to the 1s state) ranging 

from 0.1 - 0.8%. 

Below the BB threshold, the LB0 results are in very good agreement with the spin- 

averaged experimental measurements of bottomonium states. Above the threshold, agree- 

ment with experiment is lost, suggesting significant corrections frorn higher order effects 

and possible mixings between the states from different adiabatic potentials. The mass of 

the lowest-lying hybrid (from the II, potential) is about 10.9 GeV. Hybrid mesons from all 

other hybrid potentials are significantly higher lying. The radial probability densities for 

the conventional 1s and 1P states are compared with that of the lowest-lying II, hybrid 

state in Fig. 1. Note that the size of the hybrid state is large in comparison with the 1s 

and 1P states. For all of the hybrid states studied here, the wave functions are strongly 

suppressed near the origin so that the hybrid masses cannot be affected noticeably by the 

small-r instability of the excited-state potentials from bgb + bb + glueball decay. 

The applicability of the Born-Oppenheimer approximation relies on the smallness of 

retardation effects. The difference between the leading Born-Oppenheimer Hamiltonian and 

the lowest order NRQCD Hamiltonian is the p’. -3; coupling between the quark color charge 

in motion and the gluon field. This retardation effect, which is not included in the LB0 

spectrum, can be tested by comparing the LB0 mass splittings with those determined from 



meson simulations in NRQCD. 

In order to obtain the masses of the first few escited hybrid states in a given symme- 

try channel, we obtained Monte Carlo estimates for a matrix of hybrid rneson correlation 

functions Cij(t) = (O]Mi(t)M~(O)]O) at t wo different lattice spacings. Because the masses of 

the hybrid mesons are expected to be rather high and the statistical fluctuations large, it is 

crucial to use anisotropic lattices in which the temporal lattice spacing a, is much smaller 

than the spatial lattice spacing a,. Such lattices have already been used to dramatically 

improve our knowledge of the Yang-Mills glueball spectrum [12]. In our simulations, the 

gluons are described by the improved gauge-field action of Ref. [la]. The couplings p, in- 

put aspect ratios <, and lattice sizes for each simulation are listed in Table I. Following 

Ref. [12], we set the mean temporal link ut = 1 and obtain the mean spatial link u, from 

the spatial plaquette. The values for r. in terms of a, corresponding to each simulation were 

determined in separate simulations. Further details concerning the calculation of ra/as are 

given in Ref. [12]. Note that we set the aspect ratio using a,/a, = < in all of our calculations. 

By extracting the static-quark potential from Wilson loops in various orientations on the 

lattice [13], we have verified that radiative corrections to the anisotropy as/at are small. The 

heavy quarks are treated within the NRQCD framework [14], modified for an anisotropic 

lattice. The NRQCD action includes only a covariant temporal derivative and the leading 

kinetic energy operator (with two other operators to remove O(a,) and O(a,“) errors); rela- 

tivistic corrections depending on spin, the chromoelectric E and chromomagnetic B fields, 

and higher derivatives are not included. 

Our meson operators Mi(t) are constructed on a given time-slice as follows. First, the 

spatial link variables are smeared using t,he algorithm of Ref. [15] in which every spatial link 

U,(x) on the lattice is replaced by itself plus C times the sum of its four neighboring spatial 

staples, projected back into SU(3); this procedure is iterated nc times, and we denote the 

final smeared link variables by Uj(x). Next, let g(x) and x(x) denote the Pauli spinor fields 

which annihilate a heavy quark and antiquark, respectively. Note that the antiquark field 

is defined such that C$(x)Ct = ia,x*(x), w h ere C is the charge conjugation operator. We 

define a smearedquark field by q(x) G (1 + e azA(2))“e g(x), ( an d similarly for the antiquark 
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field) where e and n, are tunable parameters (we used e = 0.12,0.14 and n@ = 2 - 7) and 

the covariant derivative operators are defined in terms of the smeared link variables Uj(x). 

These field operators, in addition to the chromomagnetic field, are then used to construct 

our meson operators, which are listed in Table II. The standard clover-leaf definition of 

the chromomagnetic field a is used, defined also in terms of the smeared link variables. 

Note that four operators are used in each of the O-+ and l-- sectors. Because our NRQCD 

action includes no spin interactions, we use only spin-singlet operators. We can easily couple 

these operators to the quark-antiquark spin to obtain various spin-triplet operators, and the 

masses of such states will be degenerate with those from the spin-singlet operators. 

In each simulation, the bare quark mass %Me is set by matching the ratio 

R = M~i,/6(lP - IS), w h ere Levi, is the so-called kinetic mass of the 1s state and 6(1P - IS) 

is the energy separation between the 1s and 1P states, to its observed value 21.01(6). The 

kinetic mass M~i, is determined by measuring the energy of the 1s state for momenta 

p’= (O,O,O), 27r(l,O,O)/L, and 27r(l, 1,0)/L, where L is the spatial extent of the periodic 

lattice. These three energies are then fit using Eo + ~2/(2M~i,) to extract M~i,. Several low 

statistics runs using a range of quark masses were done in order to tune the quark mass. 

From the results of these runs, we estimate that the uncertainty in tuning the quark mass 

is about 5%. 

The simulation results are listed in Table I. The masses mi in the If-, l++, and Of+ 

channels are extracted by fitting the single correlators Ci(t) to their expected asymptotic 

form Ci(t) + ZieXp(-Illit) f or sufficiently large t. In each of the O-+ and l-- channels, we 

obtain a 4 x 4 correlation matrix. The variational method is then applied to reduce the 4 x 4 

matrix down to an optimized 2 x 2 correlation matrix C?“(t). For sufficiently large t, we 

fit all elements of this matrix using Ci=, ZipZjp exp( -m,t) to extract the two lowest-lying 

masses. In this way, we obtain an estimate of the 2s mass, as well as the first excited hybrid 

state H’,. The effective masses corresponding to several of the correlation functions obtained 

in the ,0 = 3.0, < = 3 simulation are shown in Fig. 2. 

The simulation results for the level splittings (in terms of ra and with respect to the 1s 

state) are shown in Fig. 3 against the lattice spacing. Small finite-a, errors are evident in 
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the 1P and 2s splittings from the coarse lattice simulation; none of the four hybrid splittings 

show any significant discretization errors. The simulation results compare remarkably well 

with the LB0 predictions, shown as horizontal lines in Fig. 3. In the LB0 approximation, 

the HI and H2 mesons correspond to degenerate lPn,, states of opposite E, the H3 hybrid 

corresponds to a lS,, state, and the H’, corresponds to a 2Pn, level; furthermore, the Hs 

and H’, hybrids are predicted to be nearly degenerate, with the H’, lying slightly lower. 

The simulation results share these same qualitative features, except that the Hi lies slightly 

higher than the H 3. The LB0 approximation reproduces all of the level splittings to within 

10%. In Fig. 3, we also show results [16] for the 1P and 2s splittings for an NRQCD 

action including higher order relativistic and spin interactions; the effects of such terms are 

seen to be very small. Note that spin-dependent mass splittings are difficult to estimate in 

hybrid states since the excited gluon field extends on the scale of the confinement radius 

with a nonperturbative wavefunction when its color magnetic moment interacts with the 

heavy-quark spins. 

To convert our mass splittings into physical units, we must specify the value of ro. Using 

the observed value for the 1P - 1s splitting, we find that r;’ = 467(4) MeV; using the 

2s - 1s splitting, we obtain r; - ’ - 435(5) MeV. This discrepancy is caused by our neglect 

of light quark effects [17]. Taking r;’ = 450(15) MeV, our lowest-lying hybrid state lies 

1.49(2)(5) GeV (th e second error is the uncertainty from ro) above the 1s state. 

Hybrid and conventional states substantially extending over one fermi in diameter are 

vulnerable to light-quark vacuum polarization loops which will dramatically change the static 

potentials through configuration mixing with BB mesons; instead of rising indefinitely with 

r, these potentials will eventually level off since the heavy QgQ state can undergo fission 

into two separate Bq color singlets, where q is a light quark. We expect that the plethora 

of hybrid and conventional states above 11 GeV obtained from the quenched potentials 

will not survive this splitting mechanism as observable resonances. For quark-antiquark 

separations below 1.2 fm or so? there is evidence from recent studies [18,3] that light-quark 

vacuum polarization effects do not appreciably alter the Ci and II, inter-quark potentials 

(for light-quark masses such that rnX - m,/2). S ince such distances are the most relevant for 



forrning the lowest-lying bound states, the survival of the lightest bgb hybrids as well-defined 

resonances above the BB threshold remains conceivable. 

During the preparation of this work we learned about new results [19] which have con- 

siderable overlap with our NRQCD simulations. 

This work was supported by the U.S. DOE, Grant No. DE-FG03-97ER40546. 
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FIG. 1. (a) Static potentials and radial probability densities against quark-antiquark sepa- 

ration r for ri ’ = 450 MeV. The Cl potential becomes the familiar running Coulomb law as r 

becomes very small. (b) Spin-averaged bb spectrum in the LB0 approximation (light quarks ne- 

glected). Solid lines indicate experimental measurements. Short dashed lines indicate the S and I’ 

state masses obtained from the Schrodinger equation with the Ci potential for Mb = 4.58 GeV. 

Dashed-dotted lines indicate the hybrid quarkonium states obtained from the II, (L = 1,2,3) and 

c, (L = O,l, 2) potentials. Repeating the same analysis in the Egc system, we find the lowest II, 

hybrid 1.19 GeV above the spin averaged ground state. 
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FIG. 3. Simulation results for the level splittings (in terms of rs and with respect to the 1s state) 

against the lattice spacing a,. Results from Ref. [16] using an NRQCD action with higher-order 

corrections are shown as •I and A; all other symbols indicate results from this work. Some points 

have been shifted horizontally to prevent overlaps. The horizontal lines show the LB0 predictions. 
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TABLES 

TABLE I. Simulation parameters and results. The second errors listed in the results in the 

bottom six rows are due to uncertainties in setting the heavy quark mass. 

(PT E) (3.0,3) (263) 

U; 

lattice 

0.500 0.451 

153 x 45 lo3 x 30 

# configs, sources 201, 16080 355, 17040 

r0/a, 4.130(24) 2.493( 9) 

(CT nc) (0.25,15) (0.15,10) 

asMo 2.56 3.90 

h”Zin 5.03(2) 8.21(l) 

i-0 6(1P - 1s) 0.959(8)(3) 0.998(6)(3) 

ra 6(2S - IS) 1.303(11)(10) 1.252(8)(10) 

ra 6(Hr - 1s) 3.287(53)(20) 3.338(54)(20) 

re 6(H2 - 1s) 3.37(13)(l) 3.443(47)(10) 

ro 6(H3 - IS) 4.018(55)(12) 4.034(76)(12) 

re 6(H’, - IS) 4.204(67)(21) 4.229(62)(21) 
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TABLE II. The meson spin-singlet operators used in each total angular momentum J, parity P, 

and charge conjugation C channel. Note that p = 0: 1,2, and 3 were used to produce four distinct 

operators in the O-+ and l-- sectors. In the third column are listed the spin-triplet states which 

can be formed from the operators in the last column; the states in each row are degenerate for the 

NRQCD action used here. 

JPC Degeneracies Operator 

0-+ 

1+- 

S wave 

P wave 

1-- gt [&2’]” $ 

o-t+, lff, 2++ gt fi lj 

1-- Hr hybrid o-+, 1-f, 2-+ 

1++ H2 hybrid 

0++ Hs hybrid 1+- -g @.A 4 
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